首页> 外文OA文献 >Crowd-based Semantic Event Detection and Video Annotation for Sports Videos
【2h】

Crowd-based Semantic Event Detection and Video Annotation for Sports Videos

机译:基于人群的体育视频语义事件检测与视频标注

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent developments in sport analytics have heightened the interest in collecting data on the behavior of individuals and of the entire team in sports events. Rather than using dedicated sensors for recording the data, the detection of semantic events reflecting a team's behavior and the subsequent annotation of video data is nowadays mostly performed by paid experts. In this paper, we present an approach to generating such annotations by leveraging the wisdom of the crowd. We present the CrowdSport application that allows to collect data for soccer games. It presents crowd workers short video snippets of soccer matches and allows them to annotate these snippets with event information. Finally, the various annotations collected from the crowd are automatically disambiguated and integrated into a coherent data set. To improve the quality of the data entered, we have implemented a rating system that assigns each worker a trustworthiness score denoting the confidence towards newly entered data. Using the DBSCAN clustering algorithm and the confidence score, the integration ensures that the generated event labels are of high quality, despite of the heterogeneity of the participating workers. These annotations finally serve as a basis for a video retrieval system that allows users to search for video sequences on the basis of a graphical specification of team behavior or motion of the individual player. Our evaluations of the crowd-based semantic event detection and video annotation using the Microworkers platform have shown the effectiveness of the approach and have led to results that are in most cases close to the ground truth and can successfully be used for various retrieval tasks.
机译:运动分析的最新发展引起了人们对收集有关个人和整个团队在运动赛事中的行为的数据的兴趣。如今,不是使用专用的传感器来记录数据,而是检测反映团队行为的语义事件以及随后对视频数据的注释,这主要是由付费专家来完成的。在本文中,我们提出了一种利用人群的智慧来生成此类注释的方法。我们展示了CrowdSport应用程序,该应用程序可以收集足球比赛的数据。它向人群工作者展示了足球比赛的简短视频片段,并允许他们用事件信息注释这些片段。最后,从人群中收集的各种注释将自动消除歧义,并整合到一个连贯的数据集中。为了提高输入数据的质量,我们实施了一个评分系统,为每个工作人员分配一个可信度评分,该评分表明对新输入数据的信心。使用DBSCAN聚类算法和置信度得分,尽管参与人员的异构性高,但集成可确保所生成的事件标签具有高质量。这些注释最终用作视频检索系统的基础,该系统允许用户根据团队行为或单个玩家的运动的图形说明来搜索视频序列。我们使用Microworkers平台对基于人群的语义事件检测和视频注释进行的评估显示了该方法的有效性,并得出的结果在大多数情况下接近基本事实,并且可以成功地用于各种检索任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号